Open Close
Tejedor, F.J., Bokhari, A., Rogero, O., Gorczyca, M., Zhang, J., Kim, E., Sheng, M., Budnik, V. (1997). Essential role for dlg in synaptic clustering of Shaker K+ channels in vivo.  J. Neurosci. 17(1): 152--159.
FlyBase ID
Publication Type
Research paper

The assemblage of specific ion channels and receptors at synaptic sites is crucial for signaling between pre- and postsynaptic cells. However, the mechanisms by which proteins are targeted to and clustered at synapses are poorly understood. Here we show that the product of the Drosophila discs-large gene, DLG, is colocalized with Shaker K+ channels, which are clustered at glutamatergic synapses at the larval neuromuscular junction. In heterologous cells, DLG can cluster Shaker-type K+ channels, and, in the yeast two-hybrid system, the DLG PDZ1-2 domains bind directly to the C-terminal tail of Shaker proteins. We also demonstrate that DLG-Shaker interactions are required in vivo for Shaker clustering at the neuromuscular junction. Synaptic clustering of Shaker channels is abolished not only by mutations in dlg but also by a mutation in Shaker that deletes its C-terminal DLG binding motif. Analyses of various dlg mutant alleles suggest that channel clustering and synaptic targeting functions depend on distinct DLG domains. These studies demonstrate for the first time that DLG plays an important role in synaptic organization in vivo that correlates with its ability to bind directly to specific membrane proteins of the synapse.

PubMed ID
PubMed Central ID
PMC4658234 (PMC) (EuropePMC)
Associated Information
Associated Files
Other Information
Secondary IDs
    Language of Publication
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    J. Neurosci.
    Journal of Neuroscience
    Publication Year
    0270-6474 1529-2401
    Data From Reference
    Aberrations (2)
    Alleles (9)
    Genes (3)
    Physical Interactions (1)
    Insertions (1)
    Transgenic Constructs (1)