Open Close
Reference
Citation
Wang, Y., Farr, C.L., Kaguni, L.S. (1997). Accessory subunit of mitochondrial DNA polymerase from Drosophila embryos. Cloning, molecular analysis, and association in the native enzyme.  J. Biol. Chem. 272(21): 13640--13646.
FlyBase ID
FBrf0093778
Publication Type
Research paper
Abstract

A full-length cDNA of the accessory (beta) subunit of mitochondrial DNA polymerase from Drosophila embryos has been obtained, and its nucleotide sequence was determined. The cDNA clone encodes a polypeptide with a deduced amino acid sequence of 361 residues and a predicted molecular mass of 41 kDa. The gene encoding the beta subunit lies within 4 kilobase pairs of that for the catalytic subunit in the Drosophila genome, on the left arm of chromosome 2. The two genes have similar structural features and share several common DNA sequence elements in their upstream regions, suggesting the possibility of coordinate regulation. A human cDNA homolog of the accessory subunit was identified, and its nucleotide sequence was determined. The human sequence encodes a polypeptide with a predicted molecular mass of 43 kDa that shows a high degree of amino acid sequence similarity to the Drosophila beta subunit. Subunit-specific rabbit antisera, directed against the recombinant catalytic and accessory subunit polypeptides overexpressed and purified from Escherichia coli, recognize specifically and immunoprecipitate the native enzyme from Drosophila embryos. Demonstration of the physical association of the two subunits in the Drosophila enzyme and identification of a human accessory subunit homolog provide evidence for a common heterodimeric structure for animal mitochondrial DNA polymerases.

PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Biol. Chem.
    Title
    Journal of Biological Chemistry
    Publication Year
    1905-
    ISBN/ISSN
    0021-9258
    Data From Reference
    Genes (1)