Open Close
Reference
Citation
Jimenez, G., Ish-Horowicz, D. (1997). A chimeric enhancer-of-split transcriptional activator drives neural development and achaete-scute expression.  Mol. Cell. Biol. 17(8): 4355--4362.
FlyBase ID
FBrf0095301
Publication Type
Research paper
Abstract

Drosophila melanogaster neurogenesis requires the opposing activities of two sets of basic helix-loop-helix (bHLH) proteins: proneural proteins, which confer on cells the ability to become neural precursors, and the Enhancer-of-split [E(spl)] proteins, which restrict such potential as part of the lateral inhibition process. Here, we test if E(spl) proteins function as promoter-bound repressors by examining the effects on neurogenesis of an E(spl) derivative containing a heterologous transcriptional activation domain [E(spl) m7Act (m7Act)]. In contrast to the wild-type E(spl) proteins, m7Act efficiently induces neural development, indicating that it binds to and activates target genes normally repressed by E(spl). Mutations in the basic domain disrupt m7Act activity, suggesting that its effects are mediated through direct DNA binding. m7Act causes ectopic transcription of the proneural achaete and scute genes. Our results support a model in which E(spl) proteins normally regulate neurogenesis by direct repression of genes at the top of the neural determination pathway.

PubMed ID
PubMed Central ID
PMC232289 (PMC) (EuropePMC)
DOI
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Mol. Cell. Biol.
    Title
    Molecular and Cellular Biology
    Publication Year
    1981-
    ISBN/ISSN
    0270-7306
    Data From Reference