Open Close
Restifo, L.L., Wilson, T.G. (1998). A juvenile hormone agonist reveals distinct developmental pathways mediated by ecdysone-inducible broad complex transcription factors.  Dev. Genet. 22(2): 141--159.
FlyBase ID
Publication Type
Research paper

Juvenile hormone (JH) is an important regulator of insect development that, by unknown mechanisms, modifies molecular, cellular, and organismal responses to the molting hormone, 20-hydroxyecdysone (20E). In dipteran insects such as Drosophila, JH or JH agonists, administered at times near the onset of metamorphosis, cause lethality. We tested the hypothesis that the JH agonist methoprene acts by interfering with function of the Broad Complex (BRC), a 20E-regulated locus encoding BTB/POZ-zinc finger transcription factors essential for metamorphosis of many tissues. We found that methoprene, administered by feeding or by topical application, disrupts the metamorphic reorganization of the central nervous system, salivary glands, and musculature in a dose-dependent manner. As we predicted, methoprene phenocopies a subset of previously described BRC defects; it also phenocopies Deformed and produces abnormalities not associated with known mutations. Interestingly, methoprene specifically disrupts those metamorphic events dependent on the combined action of all BRC isoforms, while sparing those that require specific isoform subsets. Thus, our data provide independent pharmacological evidence for the model, originally based on genetic studies, that BRC proteins function in two developmental pathways. Mutations of Methoprene-tolerant (Met), a gene involved in the action of JH, protect against all features of the "methoprene syndrome." These findings have allowed us to propose novel alternative models linking BRC, juvenile hormone, and MET.

PubMed ID
PubMed Central ID
Associated Information
Associated Files
Other Information
Secondary IDs
    Language of Publication
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Dev. Genet.
    Developmental Genetics
    Publication Year
    Data From Reference
    Aberrations (1)
    Alleles (4)
    Genes (3)