Open Close
Jackson, S.M., Berg, C.A. (1999). Soma-to-germline interactions during Drosophila oogenesis are influenced by dose-sensitive interactions between cut and the genes cappuccino, ovarian tumor and agnostic.  Genetics 153(1): 289--303.
FlyBase ID
Publication Type
Research paper

The cut gene of Drosophila melanogaster encodes a homeodomain protein that regulates a soma-to-germline signaling pathway required for proper morphology of germline cells during oogenesis. cut is required solely in somatic follicle cells, and when cut function is disrupted, membranes separating adjacent nurse cells break down and the structural integrity of the actin cytoskeleton is compromised. To understand the mechanism by which cut expression influences germline cell morphology, we determined whether binucleate cells form by defective cytokinesis or by fusion of adjacent cells. Egg chambers produced by cut, cappuccino, and chickadee mutants contained binucleate cells in which ring canal remnants stained with antibodies against Hu-li tai shao and Kelch, two proteins that are added to ring canals after cytokinesis is complete. In addition, defects in egg chamber morphology were observed only in middle to late stages of oogenesis, suggesting that germline cell cytokineses were normal in these mutants. cut exhibited dose-sensitive genetic interactions with cappuccino but not with chickadee or other genes that regulate cytoskeletal function, including armadillo, spaghetti squash, quail, spire, Src64B, and Tec29A. Genomic regions containing genes that cooperate with cut were identified by performing a second-site noncomplementing screen using a collection of chromosomal deficiencies. Sixteen regions that interact with cut during oogenesis and eight regions that interact during the development of other tissues were identified. Genetic interactions between cut and the ovarian tumor gene were identified as a result of the screen. In addition, the gene agnostic was found to be required during oogenesis, and genetic interactions between cut and agnostic were revealed. These results demonstrate that a signaling pathway regulating the morphology of germline cells is sensitive to genetic doses of cut and the genes cappuccino, ovarian tumor, and agnostic. Since these genes regulate cytoskeletal function and cAMP metabolism, the cut-mediated pathway functionally links these elements to preserve the cytoarchitecture of the germline cells.

PubMed ID
PubMed Central ID
PMC1460760 (PMC) (EuropePMC)
Associated Information
Associated Files
Other Information
Secondary IDs
    Language of Publication
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Publication Year
    Data From Reference