Open Close
Brogiolo, W., Stocker, H., Ikeya, T., Rintelen, F., Fernandez, R., Hafen, E. (2001). An evolutionarily conserved function of the Drosophila insulin receptor and insulin-like peptides in growth control.  Curr. Biol. 11(4): 213--221.
FlyBase ID
Publication Type
Research paper

Size regulation is fundamental in developing multicellular organisms and occurs through the control of cell number and cell size. Studies in Drosophila have identified an evolutionarily conserved signaling pathway that regulates organismal size and that includes the Drosophila insulin receptor substrate homolog Chico, the lipid kinase PI(3)K (Dp110), DAkt1/dPKB, and dS6K.We demonstrate that varying the activity of the Drosophila insulin receptor homolog (DInr) during development regulates organ size by changing cell size and cell number in a cell-autonomous manner. An amino acid substitution at the corresponding position in the kinase domain of the human and Drosophila insulin receptors causes severe growth retardation. Furthermore, we show that the Drosophila genome contains seven insulin-like genes that are expressed in a highly tissue- and stage-specific pattern. Overexpression of one of these insulin-like genes alters growth control in a DInr-dependent manner.This study shows that the Drosophila insulin receptor autonomously controls cell and organ size, and that overexpression of a gene encoding an insulin-like peptide is sufficient to increase body size.

PubMed ID
PubMed Central ID
Related Publication(s)

Growth control: invertebrate insulin surprises!
Leevers, 2001, Curr. Biol. 11(6): R209--R212 [FBrf0135711]

Associated Information
Associated Files
Other Information
Secondary IDs
    Language of Publication
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Curr. Biol.
    Current Biology
    Publication Year
    Data From Reference
    Aberrations (1)
    Alleles (14)
    Gene Groups (1)
    Genes (10)
    Experimental Tools (4)
    Transgenic Constructs (6)