Open Close
Reference
Citation
Parry, D.H., O'Farrell, P.H. (2001). The schedule of destruction of three mitotic cyclins can dictate the timing of events during exit from mitosis.  Curr. Biol. 11(9): 671--683.
FlyBase ID
FBrf0136835
Publication Type
Research paper
Abstract

Degradation of the mitotic cyclins is a hallmark of the exit from mitosis. Induction of stable versions of each of the three mitotic cyclins of Drosophila, cyclins A, B, and B3, arrests mitosis with different phenotypes. We tested a recent proposal that the destruction of the different cyclins guides progress through mitosis.Real-time imaging revealed that arrest phenotypes differ because each stable cyclin affects specific mitotic events differently. Stable cyclin A prolonged or blocked chromosome disjunction, leading to metaphase arrest. Stable cyclin B allowed the transition to anaphase, but anaphase A chromosome movements were slowed, anaphase B spindle elongation did not occur, and the monooriented disjoined chromosomes began to oscillate between the spindle poles. Stable cyclin B3 prevented normal spindle maturation and blocked major mitotic exit events such as chromosome decondensation but nonetheless allowed chromosome disjunction, anaphase B, and formation of a cytokinetic furrow, which split the spindle.We conclude that degradation of distinct mitotic cyclins is required to transit specific steps of mitosis: cyclin A degradation facilitates chromosome disjunction, cyclin B destruction is required for anaphase B and cytokinesis and for directional stability of univalent chromosome movements, and cyclin B3 degradation is required for proper spindle reorganization and restoration of the interphase nucleus. We suggest that the schedule of degradation of cyclin A, cyclin B, and then cyclin B3 contributes to the temporal coordination of mitotic events.

PubMed ID
PubMed Central ID
PMC2875931 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Curr. Biol.
    Title
    Current Biology
    Publication Year
    1991-
    ISBN/ISSN
    0960-9822
    Data From Reference
    Alleles (5)
    Genes (6)
    Transgenic Constructs (5)