Open Close
Uchida, M., Hanai, S., Uematsu, N., Sawamoto, K., Okano, H., Miwa, M., Uchida, K. (2002). Overexpression of poly(ADP-ribose) polymerase disrupts organization of cytoskeletal F-actin and tissue polarity in Drosophila.  J. Biol. Chem. 277(8): 6696--6702.
FlyBase ID
Publication Type
Research paper

Poly(ADP-ribose) polymerase (PARP) may play important roles in nuclear events such as cell cycle, cell proliferation, and maintenance of chromosomal stability. However, the exact biological role played by PARP or how PARP is involved in these cellular functions is still unclear. To elucidate the biological functions of PARP in vivo, we have constructed transgenic flies that overexpress Drosophila PARP in the developing eye primordia. These flies showed mild roughening of the normally smooth ommatidial lattice and tissue polarity disruption caused by improper rotation and chirality of the ommatidia. To clarify how this phenotypical change was induced, here we analyzed transgenic flies overexpressing PARP in the developing eye, embryo, and adult in detail. PARP mRNA level and the phenotype were enhanced in flies carrying more copies of the transgene. Developing eyes from third instar larvae were analyzed by using the neural cell marker to examine the involvement of PARP in cell fate. Morphological disorder of non-neuronal accessory cells was observed in PARP transgenic flies. Interestingly, overexpression of PARP did not interfere with the cell cycle or apoptosis, but it did disrupt the organization of cytoskeletal F-actin, resulting in aberrant cell and tissue morphology. Furthermore, heat-induced PARP expression disrupted organization of cytoskeletal F-actin in embryos and tissue polarity in adult flies. Because these phenotypes closely resembled mutants or transgenic flies of the tissue polarity genes, genetic interaction of PARP with known tissue polarity genes was examined. Transgenic flies expressing either PARP or RhoA GTPase in the eye were crossed, and co-expression of PARP suppressed the effect of RhoA GTPase. Our results indicate that PARP may play a role in cytoskeletal or cytoplasmic events in developmental processes of Drosophila.

PubMed ID
PubMed Central ID
Associated Information
Associated Files
Other Information
Secondary IDs
    Language of Publication
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    J. Biol. Chem.
    Journal of Biological Chemistry
    Publication Year
    Data From Reference
    Alleles (12)
    Genes (10)
    Experimental Tools (2)
    Transgenic Constructs (6)