Open Close
Reference
Citation
Wing, J.P., Schreader, B.A., Yokokura, T., Wang, Y., Andrews, P.S., Huseinovic, N., Dong, C.K., Ogdahl, J.L., Schwartz, L.M., White, K., Nambu, J.R. (2002). Drosophila Morgue is an F box/ubiquitin conjugase domain protein important for grim-reaper mediated apoptosis.  Nat. Cell Biol. 4(6): 451--456.
FlyBase ID
FBrf0149135
Publication Type
Research paper
Abstract

In Drosophila melanogaster, apoptosis is controlled by the integrated actions of the Grim-Reaper (Grim-Rpr) and Drosophila Inhibitor of Apoptosis (DIAP) proteins (reviewed in refs 1 4). The anti-apoptotic DIAPs bind to caspases and inhibit their proteolytic activities. DIAPs also bind to Grim-Rpr proteins, an interaction that promotes caspase activity and the initiation of apoptosis. Using a genetic modifier screen, we identified four enhancers of grim-reaper-induced apoptosis that all regulate ubiquitination processes: uba-1, skpA, fat facets (faf), and morgue. Strikingly, morgue encodes a unique protein that contains both an F box and a ubiquitin E2 conjugase domain that lacks the active site Cys required for ubiquitin linkage. A reduction of morgue activity suppressed grim-reaper-induced cell death in Drosophila. In cultured cells, Morgue induced apoptosis that was suppressed by DIAP1. Targeted morgue expression downregulated DIAP1 levels in Drosophila tissue, and Morgue and Rpr together downregulated DIAP1 levels in cultured cells. Consistent with potential substrate binding functions in an SCF ubiquitin E3 ligase complex, Morgue exhibited F box-dependent association with SkpA and F box-independent association with DIAP1. Morgue may thus have a key function in apoptosis by targeting DIAP1 for ubiquitination and turnover.

PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Nat. Cell Biol.
    Title
    Nature Cell Biology
    Publication Year
    1999-
    ISBN/ISSN
    1465-7392 1476-4679
    Data From Reference