Open Close
Reference
Citation
Stevaux, O., Dimova, D., Frolov, M.V., Taylor-Harding, B., Morris, E., Dyson, N. (2002). Distinct mechanisms of E2F regulation by Drosophila RBF1 and RBF2.  EMBO J. 21(18): 4927--4937.
FlyBase ID
FBrf0151952
Publication Type
Research paper
Abstract

RBF1, a Drosophila pRB family homolog, is required for cell cycle arrest and the regulation of E2F-dependent transcription. Here, we describe the properties of RBF2, a second family member. RBF2 represses E2F transcription and is present at E2F-regulated promoters. Analysis of in vivo protein complexes reveals that RBF1 and RBF2 interact with different subsets of E2F proteins. dE2F1, a potent transcriptional activator, is regulated specifically by RBF1. In contrast, RBF2 binds exclusively to dE2F2, a form of E2F that functions as a transcriptional repressor. We find that RBF2-mediated repression requires dE2F2. More over, RBF2 and dE2F2 act synergistically to antagonize dE2F1-mediated activation, and they co-operate to block S phase progression in transgenic animals. The network of interactions between RBF1 or RBF2 and dE2F1 or dE2F2 reveals how the activities of these proteins are integrated. These results suggest that there is a remarkable degree of symmetry in the arrangement of E2F and RB family members in mammalian cells and in DROSOPHILA.

PubMed ID
PubMed Central ID
PMC126297 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    EMBO J.
    Title
    The EMBO Journal
    Publication Year
    1982-
    ISBN/ISSN
    0261-4189
    Data From Reference