Open Close
Reference
Citation
Olofsson, B., Page, D.T. (2005). Condensation of the central nervous system in embryonic Drosophila is inhibited by blocking hemocyte migration or neural activity.  Dev. Biol. 279(1): 233--243.
FlyBase ID
FBrf0183858
Publication Type
Research paper
Abstract

Condensation is a process whereby a tissue undergoes a coordinated decrease in size and increase in cellular density during development. Although it occurs in many developmental contexts, the mechanisms underlying this process are largely unknown. Here, we investigate condensation in the embryonic Drosophila ventral nerve cord (VNC). Two major events coincide with condensation during embryogenesis: the deposition of extracellular matrix by hemocytes, and the onset of central nervous system activity. We find that preventing hemocyte migration by removing the function of the Drosophila VEGF receptor homologue, Pvr, or by disrupting Rac1 function in these cells, inhibits condensation. In the absence of hemocytes migrating adjacent to the developing VNC, the extracellular matrix components Collagen IV, Viking and Peroxidasin are not deposited around this tissue. Blocking neural activity by targeted expression of tetanus toxin light chain or an inwardly rectifying potassium channel also inhibits condensation. We find that disrupting Rac1 function in either glia or neurons, including those located in the nerve cord, causes a similar phenotype. Our data suggest that condensation of the VNC during Drosophila embryogenesis depends on both hemocyte-deposited extracellular matrix and neural activity, and allow us to propose a mechanism whereby these processes work together to shape the developing central nervous system.

PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Dev. Biol.
    Title
    Developmental Biology
    Publication Year
    1959-
    ISBN/ISSN
    0012-1606
    Data From Reference