Open Close
Wen, T., Parrish, C.A., Xu, D., Wu, Q., Shen, P. (2005). Drosophila neuropeptide F and its receptor, NPFR1, define a signaling pathway that acutely modulates alcohol sensitivity.  Proc. Natl. Acad. Sci. U.S.A. 102(6): 2141--2146.
FlyBase ID
Publication Type
Research paper

Alcohol is likely to affect neurons nonselectively, and the understanding of its action in the CNS requires elucidation of underlying neuronal circuits and associated cellular processes. We have identified a Drosophila signaling system, comprising neurons expressing neuropeptide F (NPF, a homolog of mammalian neuropeptide Y) and its receptor, NPFR1, that acutely mediates sensitivity to ethanol sedation. Flies deficient in NPF/NPFR1 signaling showed decreased alcohol sensitivity, whereas those overexpressing NPF exhibited the opposite phenotype. Furthermore, controlled functional disruption of NPF or NPFR1 neurons in adults rapidly confers resistance to ethanol sedation. Finally, the NPF/NPFR1 system selectively mediates sedation by ethanol vapor but not diethyl ether, indicating that the observed NPF/NPFR1 activity reflects a specialized response to alcohol sedation rather than a general response to intoxication by sedative agents. Together, our results provide the molecular and neural basis for the strikingly similar alcohol-responsive behaviors between flies and mammals.

PubMed ID
PubMed Central ID
PMC548536 (PMC) (EuropePMC)
Associated Information
Associated Files
Other Information
Secondary IDs
    Language of Publication
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Proc. Natl. Acad. Sci. U.S.A.
    Proceedings of the National Academy of Sciences of the United States of America
    Publication Year
    Data From Reference