Open Close
Reference
Citation
Percival-Smith, A., Teft, W.A., Barta, J.L. (2005). Tarsus determination in Drosophila melanogaster.  Genome 48(4): 712--721.
FlyBase ID
FBrf0187678
Publication Type
Research paper
Abstract

Arista versus tarsus determination is well investigated in Drosophila, yet it remains unresolved whether Antennapedia (ANTP) cell autonomously or noncell autonomously determines tarsus identity and whether Sex combs reduced (SCR) is the HOX protein required for normal tarsus determination. Three observations rule out a cell autonomous role for ANTP in tarsus determination. (i) Clonal ectopic overexpression of ANTP did not repress the expression of the arista determining protein Homothorax (HTH) in early 3rd stadium antennal imaginal discs. (ii) Clonal ectopic expression of ANTP did not transform the arista to a tarsus. (iii) Ectopic overexpression of ANTP, Labial (LAB), Deformed (DFD), SCR, Ultrabithorax (UBX), Abdominal-A (ABD-A), or Abdominal-B (ABD-B), using the dppGAL4 driver, resulted in arista-to-tarsus transformations, and repressed HTH/Extradenticle (EXD) activity noncell autonomously in early 3rd stadium antennal imaginal discs. SCR may not be the HOX protein required for normal tarsus determination, because co-ectopic expression of Proboscipedia (PB) inhibited the arista-to-tarsus transformations induced by ectopic expression of DFD, SCR, ANTP, UBX, ABD-A, and ABD-B. The proposal that SCR is the HOX protein required for normal tarsus determination is dependent on SCR being the sole target of PB suppression, which is not the case. Therefore, the possibility exists that normal tarsus determination is HOX independent.

PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    French
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Genome
    Title
    Genome
    Publication Year
    1987-
    ISBN/ISSN
    0831-2796
    Data From Reference