Open Close
O'Dor, E., Beck, S.A., Brock, H.W. (2006). Polycomb Group mutants exhibit mitotic defects in syncytial cell cycles of Drosophila embryos.  Dev. Biol. 290(2): 312--322.
FlyBase ID
Publication Type
Research paper

The Polycomb Group (PcG) of epigenetic regulators maintains the repressed state of Hox genes during development of Drosophila, thereby maintaining the correct patterning of the anteroposterior axis. PcG-mediated inheritance of gene expression patterns must be stable to mitosis to ensure faithful transmission of repressed Hox states during cell division. Previously, two PcG mutants, polyhomeotic and Enhancer of zeste, were shown to exhibit mitotic segregation defects in embryos, and condensation defects in imaginal discs, respectively. We show that polyhomeotic(proximal) but not polyhomeotic(distal) is necessary for mitosis. To test if other PcG genes have roles in mitosis, we examined embryos derived from heterozygous PcG mutant females for mitotic defects. Severe defects in sister chromatid segregation and nuclear fallout, but not condensation are exhibited by Polycomb, Posterior sex combs and Additional sex combs. By contrast, mutations in Enhancer of zeste (which encodes the histone methyltransferase subunit of the Polycomb Repressive Complex 2) exhibit condensation but not segregation defects. We propose that these mitotic defects in PcG mutants delay cell cycle progression. We discuss possible mitotic roles for PcG proteins, and suggest that delays in cell cycle progression might lead to failure of maintenance.

PubMed ID
PubMed Central ID
Associated Information
Associated Files
Other Information
Secondary IDs
    Language of Publication
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Dev. Biol.
    Developmental Biology
    Publication Year
    Data From Reference
    Aberrations (1)
    Alleles (11)
    Genes (6)