Open Close
Graham, A.C., Kiss, D.L., Andrulis, E.D. (2009). Core exosome-independent roles for Rrp6 in cell cycle progression.  Mol. Biol. Cell 20(8): 2242--2253.
FlyBase ID
Publication Type
Research paper

Exosome complexes are 3' to 5' exoribonucleases composed of subunits that are critical for numerous distinct RNA metabolic (ribonucleometabolic) pathways. Several studies have implicated the exosome subunits Rrp6 and Dis3 in chromosome segregation and cell division but the functional relevance of these findings remains unclear. Here, we report that, in Drosophila melanogaster S2 tissue culture cells, dRrp6 is required for cell proliferation and error-free mitosis, but the core exosome subunit Rrp40 is not. Micorarray analysis of dRrp6-depleted cell reveals increased levels of cell cycle- and mitosis-related transcripts. Depletion of dRrp6 elicits a decrease in the frequency of mitotic cells and in the mitotic marker phospho-histone H3 (pH3), with a concomitant increase in defects in chromosome congression, separation, and segregation. Endogenous dRrp6 dynamically redistributes during mitosis, accumulating predominantly but not exclusively on the condensed chromosomes. In contrast, core subunits localize predominantly to MTs throughout cell division. Finally, dRrp6-depleted cells treated with microtubule poisons exhibit normal kinetochore recruitment of the spindle assembly checkpoint protein BubR1 without restoring pH3 levels, suggesting that these cells undergo premature chromosome condensation. Collectively, these data support the idea that dRrp6 has a core exosome-independent role in cell cycle and mitotic progression.

PubMed ID
PubMed Central ID
PMC2669031 (PMC) (EuropePMC)
Associated Information
Associated Files
Other Information
Secondary IDs
    Language of Publication
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Mol. Biol. Cell
    Molecular Biology of the Cell
    Publication Year
    Data From Reference
    Genes (11)
    Cell Lines (1)