FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Egger-Adam, D., Katanaev, V.L. (2010). The trimeric G protein Go inflicts a double impact on axin in the Wnt/frizzled signaling pathway.  Dev. Dyn. 239(1): 168--183.
FlyBase ID
FBrf0209618
Publication Type
Research paper
Abstract
The Wnt/Frizzled signaling pathway plays crucial roles in animal development and is deregulated in many cases of carcinogenesis. We and others have previously demonstrated that Frizzled proteins initiating the intracellular signaling are typical G protein-coupled receptors and rely on the trimeric G protein Go for Wnt transduction in Drosophila. However, the mode of action of Go and its interplay with other transducers of the pathway such as Dishevelled and Axin remained unclear. Here we show that the alpha-subunit of Go directly acts on Axin, the multidomain protein playing a negative role in the Wnt signaling. G alpha o physically binds Axin and re-localizes it to the plasma membrane. Furthermore, G alpha o suppresses Axin's inhibitory action on the Wnt pathway in Drosophila wing development. The interaction of G alpha o with Axin critically depends on the RGS domain of the latter. Additionally, we show that the betagamma-component of Go can directly bind and recruit Dishevelled from cytoplasm to the plasma membrane, where activated Dishevelled can act on the DIX domain of Axin. Thus, the two components of the trimeric Go protein mediate a double-direct and indirect-impact on different regions of Axin, which likely serves to ensure a robust inhibition of this protein and transduction of the Wnt signal.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Dev. Dyn.
    Title
    Developmental Dynamics
    Publication Year
    1992-
    ISBN/ISSN
    1058-8388
    Data From Reference
    Genes (7)
    Physical Interactions (1)