Open Close
Stramer, B., Moreira, S., Millard, T., Evans, I., Huang, C.Y., Sabet, O., Milner, M., Dunn, G., Martin, P., Wood, W. (2010). Clasp-mediated microtubule bundling regulates persistent motility and contact repulsion in Drosophila macrophages in vivo.  J. Cell Biol. 189(4): 681--689.
FlyBase ID
Publication Type
Research paper

Drosophila melanogaster macrophages are highly migratory cells that lend themselves beautifully to high resolution in vivo imaging experiments. By expressing fluorescent probes to reveal actin and microtubules, we can observe the dynamic interplay of these two cytoskeletal networks as macrophages migrate and interact with one another within a living organism. We show that before an episode of persistent motility, whether responding to developmental guidance or wound cues, macrophages assemble a polarized array of microtubules that bundle into a compass-like arm that appears to anticipate the direction of migration. Whenever cells collide with one another, their microtubule arms transiently align just before cell-cell repulsion, and we show that forcing depolymerization of microtubules by expression of Spastin leads to their defective polarity and failure to contact inhibit from one another. The same is true in orbit/clasp mutants, indicating a pivotal role for this microtubule-binding protein in the assembly and/or functioning of the microtubule arm during polarized migration and contact repulsion.

PubMed ID
PubMed Central ID
PMC2872918 (PMC) (EuropePMC)
Associated Information
Associated Files
Other Information
Secondary IDs
    Language of Publication
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    J. Cell Biol.
    Journal of Cell Biology
    Publication Year
    Data From Reference
    Alleles (8)
    Genes (5)
    Natural transposons (1)
    Experimental Tools (3)
    Transgenic Constructs (7)