Open Close
Reference
Citation
Sato, D., Sugimura, K., Satoh, D., Uemura, T. (2010). Crossveinless-c, the Drosophila homolog of tumor suppressor DLC1, regulates directional elongation of dendritic branches via down-regulating Rho1 activity.  Genes Cells 15(5): 485--500.
FlyBase ID
FBrf0211000
Publication Type
Research paper
Abstract

Diverse neuronal subtypes develop distinctive morphologies of dendritic arbors that receive synaptic or sensory inputs. Dendritic arbors of many subtypes take on a polarized shape, and one underlying mechanism is unidirectionally biased elongation of dendritic branches. As reported herein, we found that Drosophila Crossveinless-c (Cv-c) was a key regulator for such directional growth. In the cv-c mutant, two subclass of multidendritic sensory neurons examined formed dorsally directed branches; however, dendritic branches had difficulty in growing along the anterior-posterior (A-P) body axis. Cv-c belongs to the family of Rho GTPase-activating proteins (RhoGAPs) and is the homolog of human tumor suppressor DLC1. The RhoGAP activity of Cv-c was required cell-autonomously for the A-P-oriented growth, and Cv-c elevated the GTPase activity of Rho1 and Cdc42 in a cell-free assay. Our analysis of genetic interactions suggested that Rho1 was the target of Cv-c in vivo. All of our results suggest that Cv-c contributes to sprouting and subsequent growth of the A-P-oriented branches through negative regulation of Rho1. We discuss a role of Cv-c in dendritic growth in response to environmental cues.

PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Genes Cells
    Title
    Genes to cells : devoted to molecular & cellular mechanisms
    Publication Year
    1996-
    ISBN/ISSN
    1356-9597
    Data From Reference