Open Close
Reference
Citation
Wang, P.Y., Pai, L.M. (2011). D-Cbl Binding to Drk Leads to Dose-Dependent Down-Regulation of EGFR Signaling and Increases Receptor-Ligand Endocytosis.  PLoS ONE 6(2): e17097.
FlyBase ID
FBrf0213073
Publication Type
Research paper
Abstract

Proper control of Epidermal Growth Factor Receptor (EGFR) signaling is critical for normal development and regulated cell behaviors. Abnormal EGFR signaling is associated with tumorigenic process of various cancers. Complicated feedback networks control EGFR signaling through ligand production, and internalization-mediated destruction of ligand-receptor complexes. Previously, we found that two isoforms of D-Cbl, D-CblS and D-CblL, regulate EGFR signaling through distinct mechanisms. While D-CblL plays a crucial role in dose-dependent down-regulation of EGFR signaling, D-CblS acts in normal restriction of EGFR signaling and does not display dosage effect. Here, we determined the underlying molecular mechanism, and found that Drk facilitates the dose-dependent regulation of EGFR signaling through binding to the proline-rich motif of D-CblL, PR. Furthermore, the RING finger domain of D-CblL is essential for promoting endocytosis of the ligand-receptor complex. Interestingly, a fusion protein of the two essential domains of D-CblL, RING- PR, is sufficient to down-regulate EGFR signal in a dose-dependent manner by promoting internalization of the ligand, Gurken. Besides, RING-SH2(Drk), a fusion protein of the RING finger domain of D-Cbl and the SH2 domain of Drk, also effectively down-regulates EGFR signaling in Drosophila follicle cells, and suppresses the effects of constitutively activated EGFR. The RING-SH2(Drk) suppresses EGFR signaling by promoting the endosomal trafficking of ligand-receptor complexes, suggesting that Drk plays a negative role in EGFR signaling by enhancing receptor endocytosis through cooperating with the RING domain of D-Cbl. Interfering the recruitment of signal transducer, Drk, to the receptor by the RING-SH2(Drk) might further reduces EGFR signaling. The fusion proteins we developed may provide alternative strategies for therapy of cancers caused by hyper-activation of EGFR signaling.

PubMed ID
PubMed Central ID
PMC3038869 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    PLoS ONE
    Title
    PLoS ONE
    Publication Year
    2006-
    ISBN/ISSN
    1932-6203
    Data From Reference