Open Close
Gowda, P.S., Zhou, F., Chadwell, L.V., McEwen, D.G. (2012). p53 Binding Prevents Phosphatase-mediated Inactivation of Diphosphorylated c-Jun N-terminal Kinase.  J. Biol. Chem. 287(21): 17554--17567.
FlyBase ID
Publication Type
Research paper

c-Jun N-terminal kinase (JNK) is a serine/threonine phosphotransferase whose sustained activation in response to genotoxic stress promotes apoptosis. In Drosophila, the normally rapid JNK-dependent apoptotic response to genotoxic stress is significantly delayed in Dmp53 (Drosophila p53) mutants. Likewise, the extent of JNK activity after UV irradiation is dependent on p53 in murine embryonic fibroblasts with loss of p53 resulting in diminished JNK activity. Together, these results suggest that p53 potentiates the JNK-dependent response to genotoxic stress; however, the mechanism whereby p53 stimulates JNK activity remains undefined. Here, we demonstrate that both Drosophila and human p53 can directly stimulate JNK activity independently of p53-dependent gene transcription. Furthermore, we demonstrate that both the Drosophila and human p53 orthologs form a physical complex with diphosphorylated JNK ((DP)JNK) both in vivo and in vitro, suggesting that the interaction is evolutionarily conserved. Focusing on human p53, we demonstrate that the interaction maps to the DNA binding domain (hp53(DBD)). Intriguingly, binding of p53(DBD) alone to (DP)JNK prevented its inactivation by MAPK phosphatase (MKP)-5; however, JNK was still able to phosphorylate c-Jun while in a complex with the p53(DBD). Apparent dissociation constants for the p53(DBD)·(DP)JNK (274 ± 14 nm) and MKP-5·(DP)JNK (55 ± 8 nm) complexes were established; however, binding of MKP-5 and p53 to JNK was not mutually exclusive. Together, these results suggest that stress-dependent increases in p53 levels potentiate JNK activation by preventing its rapid dephosphorylation by MKPs and that the simultaneous activation of p53 and JNK may constitute a "fail-safe" switch for the JNK-dependent apoptotic response.

PubMed ID
PubMed Central ID
PMC3366850 (PMC) (EuropePMC)
Associated Information
Associated Files
Other Information
Secondary IDs
    Language of Publication
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    J. Biol. Chem.
    Journal of Biological Chemistry
    Publication Year
    Data From Reference
    Alleles (5)
    Genes (6)
    Physical Interactions (1)
    Natural transposons (1)
    Insertions (1)
    Experimental Tools (3)
    Transgenic Constructs (3)