Open Close
Lim, Y.M., Hayashi, S., Tsuda, L. (2012). Ebi/AP-1 Suppresses Pro-Apoptotic Genes Expression and Permits Long-Term Survival of Drosophila Sensory Neurons.  PLoS ONE 7(5): e37028.
FlyBase ID
Publication Type
Research paper

Sensory organs are constantly exposed to physical and chemical stresses that collectively threaten the survival of sensory neurons. Failure to protect stressed neurons leads to age-related loss of neurons and sensory dysfunction in organs in which the supply of new sensory neurons is limited, such as the human auditory system. Transducin β-like protein 1 (TBL1) is a candidate gene for ocular albinism with late-onset sensorineural deafness, a form of X-linked age-related hearing loss. TBL1 encodes an evolutionarily conserved F-box-like and WD40 repeats-containing subunit of the nuclear receptor co-repressor/silencing mediator for retinoid and thyroid hormone receptor and other transcriptional co-repressor complexes. Here we report that a Drosophila homologue of TBL1, Ebi, is required for maintenance of photoreceptor neurons. Loss of ebi function caused late-onset neuronal apoptosis in the retina and increased sensitivity to oxidative stress. Ebi formed a complex with activator protein 1 (AP-1) and was required for repression of Drosophila pro-apoptotic and anti-apoptotic genes expression. These results suggest that Ebi/AP-1 suppresses basal transcription levels of apoptotic genes and thereby protects sensory neurons from degeneration.

PubMed ID
PubMed Central ID
PMC3364243 (PMC) (EuropePMC)
Associated Information
Associated Files
Other Information
Secondary IDs
    Language of Publication
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    PLoS ONE
    PLoS ONE
    Publication Year
    Data From Reference
    Aberrations (2)
    Alleles (15)
    Genes (12)
    Physical Interactions (1)
    Cell Lines (1)
    Insertions (1)
    Transgenic Constructs (4)