Open Close
Reference
Citation
Lee, Y., Montell, C. (2013). Drosophila TRPA1 Functions in Temperature Control of Circadian Rhythm in Pacemaker Neurons.  J. Neurosci. 33(16): 6716--6725.
FlyBase ID
FBrf0221305
Publication Type
Research paper
Abstract

Most animals from flies to humans count on circadian clocks to synchronize their physiology and behaviors. Daily light cycles are well known environmental cues for setting circadian rhythms. Warmer and cooler temperatures that mimic day and night are also effective in entraining circadian activity in most animals. Even vertebrate organisms can be induced to show circadian responses through exposure to temperature cycles. In poikilothermic animals such as Drosophila, temperature differences of only 2-3°C are sufficient to synchronize locomotor rhythms. However, the molecular sensors that participate in temperature regulation of circadian activity in fruit flies or other animals are enigmatic. It is also unclear whether such detectors are limited to the periphery or may be in the central brain. Here, we showed that Drosophila TRPA1 (transient receptor potential cation channel A1) was necessary for normal activity patterns during temperature cycles. The trpA1 gene was expressed in a subset of pacemaker neurons in the central brain. In response to temperature entrainment, loss of trpA1 impaired activity, and altered expression of the circadian clock protein period (Per) in a subset of pacemaker neurons. These findings underscore a role for a thermoTRP in temperature regulation that extends beyond avoidance of noxious or suboptimal temperatures.

PubMed ID
PubMed Central ID
PMC3664735 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Neurosci.
    Title
    Journal of Neuroscience
    Publication Year
    1981-
    ISBN/ISSN
    0270-6474 1529-2401
    Data From Reference
    Alleles (8)
    Genes (4)
    Transgenic Constructs (5)
    Transcripts (1)