Open Close
Reference
Citation
Stec, W., Vidal, O., Zeidler, M.P. (2013). Drosophila SOCS36E negatively regulates JAK/STAT pathway signaling via two separable mechanisms.  Mol. Biol. Cell 24(18): 3000--3009.
FlyBase ID
FBrf0222708
Publication Type
Research paper
Abstract

Conserved from humans to Drosophila, the Janus kinase/signal transducer and activators of transcription (JAK/STAT) signaling cascade is essential for multiple developmental and homeostatic processes, with regulatory molecules controlling pathway activity also highly conserved. We characterize the Drosophila JAK/STAT pathway regulator SOCS36E and show that it functions via two independent mechanisms. First, we show that Drosophila Elongin B/C and Cullin-5 act via the SOCS-box of SOCS36E to reduce pathway activity specifically in response to ligand stimulation--a process that involves endocytic trafficking and lysosomal degradation of the Domeless (Dome) receptor. Second, SOCS36E also suppresses both stimulated and basal pathway activity via an Elongin/Cullin-independent mechanism that is mediated by the N-terminus of SOCS36E, which is required for the physical interaction of SOCS36E with Dome. Although some human SOCS proteins contain N-terminal kinase-inhibitory domains, we do not identify such a region in SOCS36E and propose a model wherein the N-terminal of SOCS36E blocks access to tyrosine residues in Dome. Our biochemical analysis of a SOCS-family regulator from a lower organism highlights the fundamental conserved roles played by regulatory mechanisms in signal transduction.

PubMed ID
PubMed Central ID
PMC3771960 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Mol. Biol. Cell
    Title
    Molecular Biology of the Cell
    Publication Year
    1992-
    ISBN/ISSN
    1059-1524
    Data From Reference
    Gene Groups (1)
    Genes (12)
    Physical Interactions (2)
    Cell Lines (2)