Open Close
Reference
Citation
Peng, Y., Lee, J., Rowland, K., Wen, Y., Hua, H., Carlson, N., Lavania, S., Parrish, J.Z., Kim, M.D. (2015). Regulation of dendrite growth and maintenance by exocytosis.  J. Cell Sci. 128(23): 4279--4292.
FlyBase ID
FBrf0230321
Publication Type
Research paper
Abstract

Dendrites lengthen by several orders of magnitude during neuronal development, but how membrane is allocated in dendrites to facilitate this growth remains unclear. Here, we report that Ras opposite (Rop), the Drosophila ortholog of the key exocytosis regulator Munc18-1 (also known as STXBP1), is an essential factor mediating dendrite growth. Neurons with depleted Rop function exhibit reduced terminal dendrite outgrowth followed by primary dendrite degeneration, suggestive of differential requirements for exocytosis in the growth and maintenance of different dendritic compartments. Rop promotes dendrite growth together with the exocyst, an octameric protein complex involved in tethering vesicles to the plasma membrane, with Rop-exocyst complexes and exocytosis predominating in primary dendrites over terminal dendrites. By contrast, membrane-associated proteins readily diffuse from primary dendrites into terminals, but not in the reverse direction, suggesting that diffusion, rather than targeted exocytosis, supplies membranous material for terminal dendritic growth, revealing key differences in the distribution of materials to these expanding dendritic compartments.

PubMed ID
PubMed Central ID
PMC4712815 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Cell Sci.
    Title
    Journal of Cell Science
    Publication Year
    1966-
    ISBN/ISSN
    0021-9533
    Data From Reference