Open Close
Reference
Citation
Clemente-Ruiz, M., Murillo-Maldonado, J.M., Benhra, N., Barrio, L., Pérez, L., Quiroga, G., Nebreda, A.R., Milán, M. (2016). Gene Dosage Imbalance Contributes to Chromosomal Instability-Induced Tumorigenesis.  Dev. Cell 36(3): 290--302.
FlyBase ID
FBrf0230914
Publication Type
Research paper
Abstract

Chromosomal instability (CIN) is thought to be a source of mutability in cancer. However, CIN often results in aneuploidy, which compromises cell fitness. Here, we used the dosage compensation mechanism (DCM) of Drosophila to demonstrate that chromosome-wide gene dosage imbalance contributes to the deleterious effects of CIN-induced aneuploidy and its pro-tumorigenic action. We present evidence that resetting of the DCM counterbalances the damaging effects caused by CIN-induced changes in X chromosome number. Importantly, interfering with the DCM suffices to mimic the cellular effects of aneuploidy in terms of reactive oxygen species (ROS) production, JNK-dependent cell death, and tumorigenesis upon apoptosis inhibition. We unveil a role of ROS in JNK activation and a variety of cellular and tissue-wide mechanisms that buffer the deleterious effects of CIN, including DNA-damage repair, activation of the p38 pathway, and cytokine induction to promote compensatory proliferation. Our data reveal the existence of robust compensatory mechanisms that counteract CIN-induced cell death and tumorigenesis.

PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Dev. Cell
    Title
    Developmental Cell
    Publication Year
    2001-
    ISBN/ISSN
    1534-5807 1878-1551
    Data From Reference