Open Close
Turner, H.N., Armengol, K., Patel, A.A., Himmel, N.J., Sullivan, L., Iyer, S.C., Bhattacharya, S., Iyer, E.P., Landry, C., Galko, M.J., Cox, D.N. (2016). The TRP Channels Pkd2, NompC, and Trpm Act in Cold-Sensing Neurons to Mediate Unique Aversive Behaviors to Noxious Cold in Drosophila.  Curr. Biol. 26(23): 3116--3128.
FlyBase ID
Publication Type
Research paper

The basic mechanisms underlying noxious cold perception are not well understood. We developed Drosophila assays for noxious cold responses. Larvae respond to near-freezing temperatures via a mutually exclusive set of singular behaviors-in particular, a full-body contraction (CT). Class III (CIII) multidendritic sensory neurons are specifically activated by cold and optogenetic activation of these neurons elicits CT. Blocking synaptic transmission in CIII neurons inhibits CT. Genetically, the transient receptor potential (TRP) channels Trpm, NompC, and Polycystic kidney disease 2 (Pkd2) are expressed in CIII neurons, where each is required for CT. Misexpression of Pkd2 is sufficient to confer cold responsiveness. The optogenetic activation level of multimodal CIII neurons determines behavioral output, and visualization of neuronal activity supports this conclusion. Coactivation of cold- and heat-responsive sensory neurons suggests that the cold-evoked response circuitry is dominant. Our Drosophila model will enable a sophisticated molecular genetic dissection of cold nociceptive genes and circuits.

Graphical Abstract
Obtained with permission from Cell Press.
PubMed ID
PubMed Central ID
PMC5140760 (PMC) (EuropePMC)
Related Publication(s)

Sensing the cold: TRP channels in thermal nociception.
Himmel and Cox, 2017, Channels 11(5): 370--372 [FBrf0236826]

Associated Information
Associated Files
Other Information
Secondary IDs
    Language of Publication
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Curr. Biol.
    Current Biology
    Publication Year
    Data From Reference