Open Close
Li, D., Liu, Y., Pei, C., Zhang, P., Pan, L., Xiao, J., Meng, S., Yuan, Z., Bi, X. (2017). miR-285-Yki/Mask double-negative feedback loop mediates blood-brain barrier integrity in Drosophila.  Proc. Natl. Acad. Sci. U.S.A. 114(12): E2365--EE2374.
FlyBase ID
Publication Type
Research paper

The Hippo signaling pathway is highly conserved from Drosophila to mammals and plays a central role in maintaining organ size and tissue homeostasis. The blood-brain barrier (BBB) physiologically isolates the brain from circulating blood or the hemolymph system, and its integrity is strictly maintained to perform sophisticated neuronal functions. Until now, the underlying mechanisms of subperineurial glia (SPG) growth and BBB maintenance during development are not clear. Here, we report an miR-285-Yorkie (Yki)/Multiple Ankyrin repeats Single KH domain (Mask) double-negative feedback loop that regulates SPG growth and BBB integrity. Flies with a loss of miR-285 have a defective BBB with increased SPG ploidy and disruptive septate junctions. Mechanistically, miR-285 directly targets the Yki cofactor Mask to suppress Yki activity and down-regulates the expression of its downstream target cyclin E, a key regulator of cell cycle. Disturbance of cyclin E expression in SPG causes abnormal endoreplication, which leads to aberrant DNA ploidy and defective septate junctions. Moreover, the expression of miR-285 is increased by knockdown of yki or mask and is decreased with yki overexpression, thus forming a double-negative feedback loop. This regulatory loop is crucial for sustaining an appropriate Yki/Mask activity and cyclin E level to maintain SPG ploidy and BBB integrity. Perturbation of this signaling loop, either by dysregulated miR-285 expression or Yki activity, causes irregular SPG ploidy and BBB disruption. Furthermore, ectopic expression of miR-285 promotes canonical Hippo pathway-mediated apoptosis independent of the p53 or JNK pathway. Collectively, these results reveal an exquisite regulatory mechanism for BBB maintenance through an miR-285-Yki/Mask regulatory circuit.

PubMed ID
PubMed Central ID
PMC5373330 (PMC) (EuropePMC)
Associated Information
Associated Files
Other Information
Secondary IDs
    Language of Publication
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Proc. Natl. Acad. Sci. U.S.A.
    Proceedings of the National Academy of Sciences of the United States of America
    Publication Year
    Data From Reference