FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Gammons, M.V., Renko, M., Johnson, C.M., Rutherford, T.J., Bienz, M. (2016). Wnt Signalosome Assembly by DEP Domain Swapping of Dishevelled.  Mol. Cell 64(1): 92--104.
FlyBase ID
FBrf0237872
Publication Type
Research paper
Abstract
Extracellular signals are often transduced by dynamic signaling complexes ("signalosomes") assembled by oligomerizing hub proteins following their recruitment to signal-activated transmembrane receptors. A paradigm is the Wnt signalosome, which is assembled by Dishevelled via reversible head-to-tail polymerization by its DIX domain. Its activity causes stabilization of β-catenin, a Wnt effector with pivotal roles in animal development and cancer. How Wnt triggers signalosome assembly is unknown. Here, we use structural analysis, as well as biophysical and cell-based assays, to show that the DEP domain of Dishevelled undergoes a conformational switch, from monomeric to swapped dimer, to trigger DIX-dependent polymerization and signaling to β-catenin. This occurs in two steps: binding of monomeric DEP to Frizzled followed by DEP domain swapping triggered by its high local concentration upon Wnt-induced recruitment into clathrin-coated pits. DEP domain swapping confers directional bias on signaling, and the dimerization provides cross-linking between Dishevelled polymers, illustrating a key principle underlying signalosome formation.
Graphical Abstract
Obtained with permission from Cell Press.
PubMed ID
PubMed Central ID
PMC5065529 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Mol. Cell
    Title
    Molecular Cell
    Publication Year
    1997-
    ISBN/ISSN
    1097-2765 1097-4164
    Data From Reference
    Genes (1)