Open Close
Rossi, F., Attolini, C.S., Mosquera, J.L., Gonzalez, C. (2018). Drosophila Larval Brain Neoplasms Present Tumour-Type Dependent Genome Instability.  G3 (Bethesda) 8(4): 1205--1214.
FlyBase ID
Publication Type
Research paper

Single nucleotide polymorphisms (SNPs) and copy number variants (CNVs) are found at different rates in human cancer. To determine if these genetic lesions appear in Drosophila tumors we have sequenced the genomes of 17 malignant neoplasms caused by mutations in l(3)mbt, brat, aurA, or lgl We have found CNVs and SNPs in all the tumors. Tumor-linked CNVs range between 11 and 80 per sample, affecting between 92 and 1546 coding sequences. CNVs are in average less frequent in l(3)mbt than in brat lines. Nearly half of the CNVs fall within the 10 to 100Kb range, all tumor samples contain CNVs larger that 100 Kb and some have CNVs larger than 1Mb. The rates of tumor-linked SNPs change more than 20-fold depending on the tumor type: at late time points brat, l(3)mbt, and aurA and lgl lines present median values of SNPs/Mb of exome of 0.16, 0.48, and 3.6, respectively. Higher SNP rates are mostly accounted for by C > A transversions, which likely reflect enhanced oxidative stress conditions in the affected tumors. Both CNVs and SNPs turn over rapidly. We found no evidence for selection of a gene signature affected by CNVs or SNPs in the cohort. Altogether, our results show that the rates of CNVs and SNPs, as well as the distribution of CNV sizes in this cohort of Drosophila tumors are well within the range of those reported for human cancer. Genome instability is therefore inherent to Drosophila malignant neoplastic growth at a variable extent that is tumor type dependent.

PubMed ID
PubMed Central ID
PMC5873911 (PMC) (EuropePMC)
Associated Information
Associated Files
Other Information
Secondary IDs
    Language of Publication
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    G3 (Bethesda)
    G3 : genes - genomes - genetics
    Data From Reference