Open Close
Reference
Citation
Ray, S., Rosenberg, M.I., Chanut-Delalande, H., Decaras, A., Schwertner, B., Toubiana, W., Auman, T., Schnellhammer, I., Teuscher, M., Valenti, P., Khila, A., Klingler, M., Payre, F. (2019). The mlpt/Ubr3/Svb module comprises an ancient developmental switch for embryonic patterning.  eLife 8(): e39748.
FlyBase ID
FBrf0241878
Publication Type
Research paper
Abstract

Small open reading frames (smORFs) encoding 'micropeptides' exhibit remarkable evolutionary complexity. Conserved peptides encoded by mille-pattes (mlpt)/polished rice (pri)/tarsal less (tal) are essential for embryo segmentation in Tribolium but, in Drosophila, function in terminal epidermal differentiation and patterning of adult legs. Here, we show that a molecular complex identified in Drosophila epidermal differentiation, comprising Mlpt peptides, ubiquitin-ligase Ubr3 and transcription factor Shavenbaby (Svb), represents an ancient developmental module required for early insect embryo patterning. We find that loss of segmentation function for this module in flies evolved concomitantly with restriction of Svb expression in early Drosophila embryos. Consistent with this observation, artificially restoring early Svb expression in flies causes segmentation defects that depend on mlpt function, demonstrating enduring potency of an ancestral developmental switch despite evolving embryonic patterning modes. These results highlight the evolutionary plasticity of conserved molecular complexes under the constraints of essential genetic networks.

PubMed ID
PubMed Central ID
PMC6428570 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    eLife
    Title
    eLife
    ISBN/ISSN
    2050-084X
    Data From Reference