Open Close
Park, J.H., Nguyen, T.T.N., Lee, E.M., Castro-Aceituno, V., Wagle, R., Lee, K.S., Choi, J., Song, Y.H. (2019). Role of p53 isoforms in the DNA damage response during Drosophila oogenesis.  Sci. Rep. 9(1): 11473.
FlyBase ID
Publication Type
Research paper

The tumor suppressor p53 is involved in the DNA damage response and induces cell cycle arrest or apoptosis upon DNA damage. Drosophila p53 encodes two isoforms, p53A and p53B, that induce apoptosis in somatic cells. To investigate the roles of Drosophila p53 isoforms in female germline cells, the DNA damage response was analyzed in the adult ovary. Early oogenesis was sensitive to irradiation and lok-, p53-, and hid-dependent cell death occurred rapidly after both low- and high-dose irradiation. Both p53 isoforms were responsible for this cell death. On the other hand, delayed cell death in mid-oogenesis was induced at a low level only after high-dose irradiation in a p53-independent manner. The daily egg production, which did not change after low-dose irradiation, was severely reduced after high-dose irradiation in p53 mutant females due to the loss of germline stem cells. When the p53A or p53B isoform was expressed in the germline cells in the p53 mutant females at levels that do not affect normal oogenesis, p53A, but not p53B, restored the fertility of the irradiated female. In summary, moderate expression of p53A is critical to maintain the function of germline stem cells during normal oogenesis as well as after high-dose irradiation.

PubMed ID
PubMed Central ID
PMC6685966 (PMC) (EuropePMC)
Associated Information
Associated Files
Other Information
Secondary IDs
    Language of Publication
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Sci. Rep.
    Scientific reports
    Data From Reference
    Aberrations (1)
    Alleles (10)
    Genes (6)
    Physical Interactions (1)
    Natural transposons (1)
    Experimental Tools (1)
    Transgenic Constructs (5)