Open Close
Reference
Citation
Kamimura, K., Odajima, A., Ikegawa, Y., Maru, C., Maeda, N. (2019). The HSPG Glypican Regulates Experience-Dependent Synaptic and Behavioral Plasticity by Modulating the Non-Canonical BMP Pathway.  Cell Rep. 28(12): 3144--3156.e4.
FlyBase ID
FBrf0243484
Publication Type
Research paper
Abstract

Under food deprivation conditions, Drosophila larvae exhibit increases in locomotor speed and synaptic bouton numbers at neuromuscular junctions (NMJs). Octopamine, the invertebrate counterpart of noradrenaline, plays critical roles in this process; however, the underlying mechanisms remain unclear. We show here that a glypican (Dlp) negatively regulates type I synaptic bouton formation, postsynaptic expression of GluRIIA, and larval locomotor speed. Starvation-induced octopaminergic signaling decreases Dlp expression, leading to increases in synapse formation and locomotion. Dlp is expressed by postsynaptic muscle cells and suppresses the non-canonical BMP pathway, which is composed of the presynaptic BMP receptor Wit and postsynaptic GluRIIA-containing ionotropic glutamate receptor. We find that during starvation, decreases in Dlp increase non-canonical BMP signaling, leading to increases in GluRIIA expression, type I bouton number, and locomotor speed. Our results demonstrate that octopamine controls starvation-induced neural plasticity by regulating Dlp and provides insights into how proteoglycans can influence behavioral and synaptic plasticity.

PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Cell Rep.
    Title
    Cell reports
    ISBN/ISSN
    2211-1247
    Data From Reference
    Genes (6)