Open Close
Reference
Citation
Harrison, N.J., Connolly, E., Gascón Gubieda, A., Yang, Z., Altenhein, B., Losada Perez, M., Moreira, M., Sun, J., Hidalgo, A. (2021). Regenerative neurogenic response from glia requires insulin-driven neuron-glia communication.  eLife 10(): e58756.
FlyBase ID
FBrf0248077
Publication Type
Research paper
Abstract

Understanding how injury to the central nervous system induces de novo neurogenesis in animals would help promote regeneration in humans. Regenerative neurogenesis could originate from glia and glial neuron-glia antigen-2 (NG2) may sense injury-induced neuronal signals, but these are unknown. Here, we used Drosophila to search for genes functionally related to the NG2 homologue kon-tiki (kon), and identified Islet Antigen-2 (Ia-2), required in neurons for insulin secretion. Both loss and over-expression of ia-2 induced neural stem cell gene expression, injury increased ia-2 expression and induced ectopic neural stem cells. Using genetic analysis and lineage tracing, we demonstrate that Ia-2 and Kon regulate Drosophila insulin-like peptide 6 (Dilp-6) to induce glial proliferation and neural stem cells from glia. Ectopic neural stem cells can divide, and limited de novo neurogenesis could be traced back to glial cells. Altogether, Ia-2 and Dilp-6 drive a neuron-glia relay that restores glia and reprogrammes glia into neural stem cells for regeneration.

PubMed ID
PubMed Central ID
PMC7880684 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    eLife
    Title
    eLife
    ISBN/ISSN
    2050-084X
    Data From Reference
    Aberrations (1)
    Alleles (62)
    Genes (47)
    Natural transposons (1)
    Insertions (6)
    Experimental Tools (3)
    Transgenic Constructs (54)