Open Close
Reference
Citation
Chu, W.C., Hayashi, S. (2021). Mechano-chemical enforcement of tendon apical ECM into nano-filaments during Drosophila flight muscle development.  Curr. Biol. 31(7): 1366--1378.e7.
FlyBase ID
FBrf0248720
Publication Type
Research paper
Abstract

Contractile tension is critical for musculoskeletal system development and maintenance. In insects, the muscular force is transmitted to the exoskeleton through the tendon cells and tendon apical extracellular matrix (ECM). In Drosophila, we found tendon cells secrete Dumpy (Dpy), a zona pellucida domain (ZPD) protein, to form the force-resistant filaments in the exuvial space, anchoring the tendon cells to the pupal cuticle. We showed that Dpy undergoes filamentous conversion in response to the tension increment during indirect flight muscle development. We also found another ZPD protein Quasimodo (Qsm) protects the notum epidermis from collapsing under the muscle tension by enhancing the tensile strength of Dpy filaments. Qsm is co-transported with Dpy in the intracellular vesicles and diffuses into the exuvial space after secretion. Tissue-specific qsm expression rescued the qsm mutant phenotypes in distant tissues, suggesting Qsm can function in a long-range, non-cell-autonomous manner. In the cell culture assay, Qsm interacts with Dpy-ZPD and promotes secretion and polymerization of Dpy-ZPD. The roles of Qsm underlies the positive feedback mechanism of force-dependent organization of Dpy filaments, providing new insights into apical ECM remodeling through the unconventional interaction of ZPD proteins.

PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Curr. Biol.
    Title
    Current Biology
    Publication Year
    1991-
    ISBN/ISSN
    0960-9822
    Data From Reference