FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Downes, B.P., Saracco, S.A., Lee, S.S., Crowell, D.N., Vierstra, R.D. (2006). MUBs, a family of ubiquitin-fold proteins that are plasma membrane-anchored by prenylation.  J. Biol. Chem. 281(37): 27145--27157.
FlyBase ID
FBrf0200045
Publication Type
Research paper
Abstract
Ubiquitin (Ub)-fold proteins are rapidly emerging as an important class of eukaryotic modifiers, which often exert their influence by post-translational addition to other intracellular proteins. Despite assuming a common beta-grasp three-dimensional structure, their functions are highly diverse because of distinct surface features and targets and include tagging proteins for selective breakdown, nuclear import, autophagic recycling, vesicular trafficking, polarized morphogenesis, and the stress response. Here we describe a novel family of Membrane-anchored Ub-fold (MUB) proteins that are present in animals, filamentous fungi, and plants. Extending from the C terminus of the Ub-fold is typically a cysteine-containing CAAX (where A indicates aliphatic amino acid) sequence that can direct the attachment of either a 15-carbon farnesyl or a 20-carbon geranylgeranyl moiety in vitro. Modified forms of several MUBs were detected in transgenic Arabidopsis thaliana, suggesting that these MUBs are prenylated in vivo. Both cell fractionation and confocal microscopic analyses of Arabidopsis plants expressing GFP-MUB fusions showed that the modified forms are membrane-anchored with a significant enrichment on the plasma membrane. This plasma membrane location was blocked in vivo in prenyltransferase mutants and by mevinolin, which inhibits the synthesis of prenyl groups. In addition to the five MUBs with CAAX boxes, Arabidopsis has one MUB variant with a cysteine-rich C terminus distinct from the CAAX box that is also membrane-anchored, possibly through the attachment of a long chain acyl group. Although the physiological role(s) of MUBs remain unknown, the discovery of these prenylated forms further expands the diversity and potential functions of Ub-fold proteins in eukaryotic biology.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Biol. Chem.
    Title
    Journal of Biological Chemistry
    Publication Year
    1905-
    ISBN/ISSN
    0021-9258
    Data From Reference
    Genes (1)