FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Sander, M., Benhaim, D. (1996). Drosophila Rrp1 3'-exonuclease: demonstration of DNA sequence dependence and DNA strand specificity.  Nucleic Acids Res. 24(20): 3926--3933.
FlyBase ID
FBrf0090783
Publication Type
Research paper
Abstract
Drosophila Rrp1 (recombination repair protein 1) is a DNA repair enzyme whose nuclease activities include AP-endonuclease, 3'-exonuclease, 3'-phosphodiesterase and 3'-phosphatase. This study investigates the sequence specificity of the dsDNA 3'-exonuclease activity of Rrp1. We demonstrate that the activity is more efficient in purine-rich regions of dsDNA than in pyrimidine-rich regions. Rrp1 exonuclease activity is examined at 3'-terminal homopurine or homopyrimidine tracts, at junctions between purine- and pyrimidine-rich sequences and upon encountering repeated dinucleotide runs. The data show that purine-purine and 3'-pyrimidine-5'-purine dinucleotide bonds are cleaved faster than 3'-purine-5'-pyrimidine or pyrimidine-pyrimidine bonds. Thus, the base occupying the penultimate position in the 3'-terminal dinucleotide may be important in determining the relative efficiency of bond cleavage by Rrp1. These findings may reflect upon specific DNA-protein interactions in the enzyme active site.
PubMed ID
PubMed Central ID
PMC146189 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Nucleic Acids Res.
    Title
    Nucleic Acids Research
    Publication Year
    1974-
    ISBN/ISSN
    0305-1048
    Data From Reference
    Genes (1)