FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Foriel, S., Renkema, G.H., Lasarzewski, Y., Berkhout, J., Rodenburg, R.J., Smeitink, J.A.M., Beyrath, J., Schenck, A. (2019). A Drosophila Mitochondrial Complex I Deficiency Phenotype Array.  Front. Genet. 10(): 245.
FlyBase ID
FBrf0242006
Publication Type
Research paper
Abstract
Mitochondrial diseases are a group of rare life-threatening diseases often caused by defects in the oxidative phosphorylation system. No effective treatment is available for these disorders. Therapeutic development is hampered by the high heterogeneity in genetic, biochemical, and clinical spectra of mitochondrial diseases and by limited preclinical resources to screen and identify effective treatment candidates. Alternative models of the pathology are essential to better understand mitochondrial diseases and to accelerate the development of new therapeutics. The fruit fly Drosophila melanogaster is a cost- and time-efficient model that can recapitulate a wide range of phenotypes observed in patients suffering from mitochondrial disorders. We targeted three important subunits of complex I of the mitochondrial oxidative phosphorylation system with the flexible UAS-Gal4 system and RNA interference (RNAi): NDUFS4 (ND-18), NDUFS7 (ND-20), and NDUFV1 (ND-51). Using two ubiquitous driver lines at two temperatures, we established a collection of phenotypes relevant to complex I deficiencies. Our data offer models and phenotypes with different levels of severity that can be used for future therapeutic screenings. These include qualitative phenotypes that are amenable to high-throughput drug screening and quantitative phenotypes that require more resources but are likely to have increased potential and sensitivity to show modulation by drug treatment.
PubMed ID
PubMed Central ID
PMC6445954 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Front. Genet.
    Title
    Frontiers in genetics
    ISBN/ISSN
    1664-8021
    Data From Reference