FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Martin-Peña, A., Rincon-Limas, D.E., Fernandez-Funez, P. (2017). Anti-Aβ single-chain variable fragment antibodies restore memory acquisition in a Drosophila model of Alzheimer's disease.  Sci. Rep. 7(1): 11268.
FlyBase ID
FBrf0236674
Publication Type
Research paper
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder triggered by the accumulation of soluble assemblies of the amyloid-β42 (Aβ42) peptide. Despite remarkable advances in understanding the pathogenesis of AD, the development of palliative therapies is still lacking. Engineered anti-Aβ42 antibodies are a promising strategy to stall the progression of the disease. Single-chain variable fragment (scFv) antibodies increase brain penetration and offer flexible options for delivery while maintaining the epitope targeting of full antibodies. Here, we examined the ability of two anti-Aβ scFv antibodies targeting the N-terminal (scFv9) and C-terminal (scFv42.2) regions of Aβ42 to suppress the progressive memory decline induced by extracellular deposition of Aβ42 in Drosophila. Using olfactory classical conditioning, we observe that both scFv antibodies significantly improve memory performance in flies expressing Aβ42 in the mushroom body neurons, which are intimately involved in the coding and storage of olfactory memories. The scFvs effectively restore memory at all ages, from one-day post-eclosion to thirty-day-old flies, proving their ability to prevent the toxicity of different pathogenic assemblies. These data support the application of this paradigm of Aβ42-induced memory loss in Drosophila to investigate the protective activity of Aβ42-binding agents in an AD-relevant functional assay.
PubMed ID
PubMed Central ID
PMC5595865 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Sci. Rep.
    Title
    Scientific reports
    ISBN/ISSN
    2045-2322
    Data From Reference
    Alleles (4)
    Genes (3)
    Human Disease Models (1)
    Insertions (1)
    Transgenic Constructs (3)