FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Wodarz, A., Ramrath, A., Kuchinke, U., Knust, E. (1999). Bazooka provides an apical cue for Inscuteable localization in Drosophila neuroblasts.  Nature 402(6761): 544--547.
FlyBase ID
FBrf0123245
Publication Type
Research paper
Abstract
Asymmetric cell division generates daughter cells with different developmental fates from progenitor cells that contain localized determinants. During this division, the asymmetric localization of cell-fate determinants and the orientation of the mitotic spindle must be precisely coordinated. In Drosophila neuroblasts, inscuteable controls both spindle orientation and the asymmetric localization of the cell-fate determinants Prospero and Numb. Inscuteable itself is localized in an apical cortical crescent and thus reflects the intrinsic asymmetry of the neuroblast. Here we show that localization of Inscuteable depends on Bazooka, a protein containing three PDZ domains with overall sequence similarity to Par-3 of Caenorhabditis elegans. Bazooka and Inscuteable form a complex that also contains Staufen, a protein responsible for the asymmetric localization of prospero messenger RNA. We propose that, after delamination of the neuroblast from the neuroepithelium, Bazooka provides an asymmetric cue in the apical cytocortex that is required to anchor Inscuteable. As Bazooka is also responsible for the maintenance of apical-basal polarity in epithelial tissues, it may be the missing link between epithelial polarity and neuroblast polarity.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Nature
    Title
    Nature
    Publication Year
    1869-
    ISBN/ISSN
    0028-0836
    Data From Reference
    Aberrations (1)
    Alleles (4)
    Genes (5)
    Physical Interactions (6)
    Cell Lines (1)
    Transgenic Constructs (2)