Abstract
The adenomatous polyposis coli (APC) protein is an important tumour suppressor in the colon. It promotes the destabilisation of free cytoplasmic beta-catenin (the vertebrate homologue of the Drosophila protein Armadillo), a critical effector of the Wnt signalling pathway. The beta-catenin protein is also a component of adherens junctions, linking these to the actin cytoskeleton. In Drosophila epithelial cells, the ubiquitous form of APC, known as E-APC, is associated with adherens junctions. This association appears to be necessary for E-APC to function in destabilising Armadillo.Using actin-depolymerising drugs, we established that an intact actin cytoskeleton is required for the association of E-APC with adherens junctions in the Drosophila embryo. From an analysis of profilin mutants, whose actin cytoskeleton is disrupted, we found that E-APC also requires actin filaments to associate with adhesive cell membranes in the ovary. Notably, conditions that delocalised E-APC from membranes, including a mutation in E-APC itself, caused partial detachment of Armadillo from adhesive membranes.Actin filaments are continuously required for E-APC to be associated with junctional membranes. These filaments may serve as tracks for E-APC to reach the adherens junctions. The failure of E-APC to do so appears to affect the integrity of junctional complexes.