FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Nauber, U., Pankratz, M.J., Kienlin, A., Seifert, E., Klemm, U., Jäckle, H. (1988). Abdominal segmentation of the Drosophila embryo requires a hormone receptor-like protein encoded by the gap gene knirps.  Nature 336(): 489--492.
FlyBase ID
FBrf0048760
Publication Type
Letter
Abstract
The body pattern along the anterior-posterior axis of the insect embryo is thought to be established by two organizing centres localized at the ends of the egg. Genetic analysis of the polarity-organizing centres in Drosophila has identified three distinct classes of maternal effect genes that organize the anterior, posterior and terminal pattern elements of the embryo. The factors provided by these gene classes specify the patterns of expression of the segmentation genes at defined positions along the longitudinal axis of the embryo. The system responsible for organizing the posterior segment pattern is a group of at least seven maternal genes and the zygotic gap gene knirps (kni). Their mutant phenotype has adjacent segments in the abdominal region of the embryo deleted. Genetic analysis and cytoplasmic transplantation experiments suggested that these maternal genes are required to generate a 'posterior activity' that is thought to activate the expression of kni (reviewed in ref. 2). The molecular nature of the members of the posterior group is still unknown. Here we report the molecular characterization of the kni gene that codes for a member of the steroid/thyroid receptor superfamily of proteins which in vertebrates act as ligand-dependent DNA-binding transcription regulators.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Nature
    Title
    Nature
    Publication Year
    1869-
    ISBN/ISSN
    0028-0836
    Data From Reference
    Aberrations (3)
    Alleles (4)
    Genes (5)