FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Lo, P.C.H., Frasch, M. (1997). A novel KH-domain protein mediates cell adhesion processes in Drosophila.  Dev. Biol. 190(2): 241--256.
FlyBase ID
FBrf0098832
Publication Type
Research paper
Abstract
Adhesion of cells to one another and to extracellular matrices has major roles in morphogenetic processes during development. One important family of cell adhesion receptors are the integrins, which in Drosophila have crucial functions in at least two adhesion-mediated developmental events: embryonic muscle attachment and adhesion of the wing epithelia. We have cloned and characterized a gene (struthio) that is expressed in embryonic mesodermal and muscle cells, including cardioblasts, and epidermal muscle attachment sites in a pattern that is reminiscent of the expression pattern of the PS integrins. Maternal and zygotic transcripts are produced by this gene and encode similar proteins with two alternative carboxy tails. Both proteins contain identical KH domains, a protein sequence motif that is found in numerous proteins that interact with RNA. The struthio protein is highly homologous in a region including the KH domain to the mouse quaking and C. elegans gld-1 proteins, two developmentally important genes. Somatic homozygous clones of an embryonic lethal mutation in this gene (stru1A122) cause wing blisters and flight impairment, phenotypes which are associated with PS integrin subunit mutations. Thus, the struthio gene encodes a putative RNA-binding protein that appears to regulate some aspects of Drosophila integrin functioning.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Dev. Biol.
    Title
    Developmental Biology
    Publication Year
    1959-
    ISBN/ISSN
    0012-1606
    Data From Reference
    Aberrations (3)
    Alleles (5)
    Genes (4)
    Insertions (2)