FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Thum, A.S., Knapek, S., Rister, J., Dierichs-Schmitt, E., Heisenberg, M., Tanimoto, H. (2006). Differential potencies of effector genes in adult Drosophila.  J. Comp. Neurol. 498(2): 194--203.
FlyBase ID
FBrf0193184
Publication Type
Research paper
Abstract
The GAL4/UAS gene expression system in Drosophila has been crucial in revealing the behavioral significance of neural circuits. Transgene products that block neurotransmitter release and induce cell death have been proved to inhibit neural function powerfully. Here we compare the action of the five effector genes shibire(ts1), Tetanus toxin light chain (TNT), reaper, Diphtheria toxin A-chain (DTA), and inwardly rectifying potassium channel (Kir2.1) and show differences in their efficiency depending on the target cells and the timing of induction. Specifically, effectors blocking neuronal transmission or excitability led to adult-induced paralysis more efficiently than those causing cell ablation. We contrasted these differential potencies in adult to their actions during development. Furthermore, we induced TNT expression in the adult mushroom bodies. In contrast to the successful impairment in short-term olfactory memory by shibire(ts1), adult TNT expression in the same set of cells did not lead to any obvious impairment. Altogether, the efficiency of effector genes depends on properties of the targeted neurons. Thus, we conclude that the selection of the appropriate effector gene is critical for evaluating the function of neural circuits.
PubMed ID
PubMed Central ID
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    J. Comp. Neurol.
    Title
    Journal of Comparative Neurology
    Publication Year
    1911-
    ISBN/ISSN
    0021-9967
    Data From Reference