FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Pandey, A., Galeone, A., Han, S.Y., Story, B.A., Consonni, G., Mueller, W.F., Steinmetz, L.M., Vaccari, T., Jafar-Nejad, H. (2023). Gut barrier defects, intestinal immune hyperactivation and enhanced lipid catabolism drive lethality in NGLY1-deficient Drosophila.  Nat. Commun. 14(1): 5667.
FlyBase ID
FBrf0257596
Publication Type
Research paper
Abstract
Intestinal barrier dysfunction leads to inflammation and associated metabolic changes. However, the relative impact of gut bacteria versus non-bacterial insults on animal health in the context of barrier dysfunction is not well understood. Here, we establish that loss of Drosophila N-glycanase 1 (Pngl) in a specific intestinal cell type leads to gut barrier defects, causing starvation and JNK overactivation. These abnormalities, along with loss of Pngl in enterocytes and fat body, result in Foxo overactivation, leading to hyperactive innate immune response and lipid catabolism and thereby contributing to lethality. Germ-free rearing of Pngl mutants rescued their developmental delay but not lethality. However, raising Pngl mutants on isocaloric, fat-rich diets partially rescued lethality. Our data indicate that Pngl functions in Drosophila larvae to establish the gut barrier, and that the lethality caused by loss of Pngl is primarily mediated through non-bacterial induction of immune and metabolic abnormalities.
PubMed ID
PubMed Central ID
PMC10499810 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    Nat. Commun.
    Title
    Nature communications
    ISBN/ISSN
    2041-1723
    Data From Reference