FB2025_01 , released February 20, 2025
Reference Report
Open Close
Reference
Citation
Clark, S.G., Graybeal, L.L., Bhattacharjee, S., Thomas, C., Bhattacharya, S., Cox, D.N. (2018). Basal autophagy is required for promoting dendritic terminal branching in Drosophila sensory neurons.  PLoS ONE 13(11): e0206743.
FlyBase ID
FBrf0240507
Publication Type
Research paper
Abstract
Dendrites function as the primary sites for synaptic input and integration with impairments in dendritic arborization being associated with dysfunctional neuronal circuitry. Post-mitotic neurons require high levels of basal autophagy to clear cytotoxic materials and autophagic dysfunction under native or cellular stress conditions has been linked to neuronal cell death as well as axo-dendritic degeneration. However, relatively little is known regarding the developmental role of basal autophagy in directing aspects of dendritic arborization or the mechanisms by which the autophagic machinery may be transcriptionally regulated to promote dendritic diversification. We demonstrate that autophagy-related (Atg) genes are positively regulated by the homeodomain transcription factor Cut, and that basal autophagy functions as a downstream effector pathway for Cut-mediated dendritic terminal branching in Drosophila multidendritic (md) sensory neurons. Further, loss of function analyses implicate Atg genes in promoting cell type-specific dendritic arborization and terminal branching, while gain of function studies suggest that excessive autophagy leads to dramatic reductions in dendritic complexity. We demonstrate that the Atg1 initiator kinase interacts with the dual leucine zipper kinase (DLK) pathway by negatively regulating the E3 ubiquitin ligase Highwire and positively regulating the MAPKKK Wallenda. Finally, autophagic induction partially rescues dendritic atrophy defects observed in a model of polyglutamine toxicity. Collectively, these studies implicate transcriptional control of basal autophagy in directing dendritic terminal branching and demonstrate the importance of homeostatic control of autophagic levels for dendritic arbor complexity under native or cellular stress conditions.
PubMed ID
PubMed Central ID
PMC6218061 (PMC) (EuropePMC)
Associated Information
Comments
Associated Files
Other Information
Secondary IDs
    Language of Publication
    English
    Additional Languages of Abstract
    Parent Publication
    Publication Type
    Journal
    Abbreviation
    PLoS ONE
    Title
    PLoS ONE
    Publication Year
    2006-
    ISBN/ISSN
    1932-6203
    Data From Reference